
 
 

BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT 
Avalahalli, Doddaballapur Main Road, Bengaluru - 560064 

 

Digital Signal Processing-18EC52 
 

 
 

 
 

1 

 
 
 

 
 INDEX 

 
 

Sl.No Module Page Number 
1 Module1- Discrete Fourier Transform 2 

2 Module 2- DFT and its properties 5 

3 Module 3- FFT 9 

4 Module 4- IIR filter Realization 38 
5 Module 5- FIR filter Realization 46 

 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 



 
 

BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT 
Avalahalli, Doddaballapur Main Road, Bengaluru - 560064 

 

Digital Signal Processing-18EC52 
 

 
 

 
 

2 

 
 

Module 1 

 
Discrete Fourier Transform 

 
Signal: a signal is a function that conveys some information  
 Processing: is changing the signal or extracting information from the signal 

 
All signals are analog in nature in real time. Analog signals are sampled to derive digital 
signals. 
Signals exist in time domain. These have to be transformed into the frequency domain 
using any of the transformation techniques. 

Processing of the signal is done in the frequency domain. 
The frequency domain signal is converted back to time domain. 
 
Ex: consider, a sound signal may be a music signal. The signal is analog, which is 

sampled to get a digital signal. 
The next step is to convert the time domain digital signal to frequency domain signal.  
Then the signal is subjected to processing may be filtering.  
The signal is converted back to the time domain.  

 
Digital signal processing consists of sampling an analog signal, transforming it and then 
processing it.  
 

 

Discrete Fourier Transform 
 

Introduction: 

A discrete time sysytem may be described by the convolution sum, the fourier 
representation and the z transform as seen in the previous chapter. 
If the signal is periodic in the time domain DTFS representation can be used, in the 
frequency domain the spectrum is discrete and periodic.If the signal is non-periodic or of 

finite duration the frequency domain representation is periodic and continuous which is 
not convenient to implement on the computer. Exploiting the periodicity property of 
DTFS representation the finite duration sequence can also be represented in the frequency 
domain, which is referred to as Discrete Fourier Transform DFT. 

 DFT is an important mathematical tool which can be used for the software 
implementation of certain digital signal processing algorithms .DFT gives a method to 
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transform a given sequence to frequency domain and to represent the spectrum of the 
sequence  using  only k frequency values, where k is an integer that takes N values, 

 K=0,1,2,…..N-1. 
The advantage of  DFT are : 

1. It is computationally convenient. 
2. The DFT of a finite length sequence makes the frequency domain analysis much 

simpler than continuous Fourier transform technique. 

Discrete Fourier Transform: 
The DTFT representation for a finite duration sequence is   
 

  ∞  -jωn 
X(jω)= ∑ x(n)℮ 
 n= -∞        
            jωn 

X(n)=1/2π    ∫X(jω)e   dω ω═ 2πk/n 
        2π 
where x(n) is a finite duration sequence, X(jω) is peiodic with period 2π.It is 

convenient sample X(jω) with a sampling frequency equal an integer multiple of its 

period =m that is taking N uniformly spaced samples between 0 and 2π. 
Let ωk= 2πk/n , 0≤k≤N-1 
       ∞  -j2πkn/N 
Therefore X(jω)= ∑ x(n) ℮ 

        n=−∞ 
Since X(jω) is sampled for one period and there are N samples X(jω) can be 

expressed as   
          N-1 -j2πkn/N 

X(k)= X(jω)│ ω=2πkn/N     ═∑  x(n) ℮  0≤k≤N-1 
          n=0 

 
 

Matrix relation of DFT 
The  DFT expression can be expressed as  
 
[X] = [x(n)] [WN] 

                                                     
                                                      T 
where [X] = [X(0), X(1),……..] 
 

[x] is the transpose of the input sequence. WN is a N x N matrix 
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WN =   1       1       1      1     ……1 
              1       wn1  wn2     wn3….wn n-1 

             1        wn2   wn4     wn6  …wn2(n-1) 
             …………………………………… 
 
              …………………………… 

 
            ……………………………………. 
 

1 …………………………..wN (N-1)(N-1) 

   
ex; 
4 pt DFT of the sequence   0,1,2,3 
 

X(0)                   1               1            1              1 
X(1)                   1               -j           -1              j 
X(2)        =         1               -1           1            -1 
X(3)                    1                j           -1            -j 

 
 
Solving the matrix X(K) =  6  ,  -2+2j,   -2 ,  -2-2j  
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Module-2 

 
Discrete Fourier Transform and its properties 

 
  
Linearity:     

 

    A x1 (n) + b x2 (n)   a X1(k) + b  X2(k) 
 
 

 
Circular shift: 
 
In linear shift, when a sequence is shifted the sequence gets extended. In circular shift the 

number of elements in a sequence remains the same. Given a sequence x (n) the shifted 
version x(n-m) indicates a shift of m. With dfts the sequences are defined for 0 to N-1. 
 
If x(n) = x(0), x(1), x(2), x(3) 

 
X(n-1) =   x(3), x(0),x(1).x(2) 
 
X(n-2)  =   x(2), x(3), x(0), x(1) 

 
 
Time shift thm: 
 

If  x(n)  X(k) 
                                    mk 

Then  x(n-m)  WN      X(k) 

 
 
 
Frequency shift   

 

If x(n) X(k) 
    +nok 

Wn            x(n)  X(k+no) 

                              N-1          kn 
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Consider    x(k)  =  x(n) W n  

                              n=0   
                                   N-1 
                                                            (k+ no)n 

                   X(k+no)=\    x(n) WN          

                                    n=0   
                                                      kn         non                                  

                            =  x(n) WN            WN 

 
                                         non 

 X(k+no)x(n) WN      
 

 
 
Modu 
 

Symmetry:  
   

For a real sequence, if x(n) X(k) 

                                             
                      X(N-K) = X* (k) 
 
 For a complex sequence 
 DFT(x*(n))  =  X*(N-K) 

 
 
If x(n)                 then      X(k) 
 

Real and even                      real and even 

Real and odd                        imaginary and odd 

Odd and imaginary              real odd 

Even and imaginary             imaginary and even    
  
 

 
convolution theorem; 
 
Circular convolution in time domain corresponds to multiplication of the DFTs  
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If y(n) = x(n)  h(n) then Y(k) = X(k) H(k) 

 
 
Ex let x(n) = 1,2,2,1  and  h(n) = 1,2,2,1 

 Then y(n) = x(n)  h(n) 

 
Y(n) = 9,10,9,8 
 
2N pt DFTs of 2 real sequences can be found using a single DFT 

 
 
If g(n) & h(n) are two sequences then let x(n) = g(n) +j h(n)  
 

 
G(k) = ½ (X(k) + X*(k)) 
 
H(k) = 1/2j (X(K) +X*(k)) 

 
 

2N pt DFT of a real sequence using a single N pt DFT 
 

 
let x(n) be a real sequence of length 2N with y(n) and g(n) denoting its N pt dft  
 
 

let y(n) = x(2n)  and g(2n+1) 
                               k 
X(k)  =  Y(k)  + WN  G(k) 
 

 
Using DFT to find IDFT 
 
The DFT expression can be used to find IDFT 

 
 
X(n)  =  1/N [DFT(X*(k)]* 
 

Digital filtering using DFT 
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In a lti system the system response is got by convoluting the input with the impulse 
response. In the frequency domain their respective spectra are multiplied. These spectra 

are continuous and hence cannot be used for computations. The product of 2 DFT s is 
equivalent to the circular convolution of the corresponding time domain sequences. 
Circular convolution cannot be used to determine the output of a linear filter to a given 
input sequence. In this case a frequency domain methodology equivalent to linear 

convolution is required. Linear convolution can be implemented using circular 
convolution by taking the length of the convolution as N >= n1+n2-1 where n1 and n2 
are the lengths of the 2 sequences. 
 

Overlap and add 
 
In order to convolve a short duration sequence with a long duration sequence x(n) ,x(n) is 
split into blocks of length N x(n) and h(n) are zero padded to length N+K-1 . circular 

convolution is performed to each block then the results are added. 
 

Overlap and save method 
 

In this method x(n) is divided into blocks of length N with an overlap of k-1 samples. the 
first block is zero padded with k-1 zeros at the beginning. H(n) is also zero padded to 
length N . circular convolution of each block is performed using the N length DFT .The 
output signal is obtained after discarding the first k-1 samples  The final result is obtained 

by adding the intermediate results.  
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Module-3 

Fast Fourier Transform (FFT) 

  

In this section we present several methods for computing the DFT efficiently. In view of 

the importance of the DFT in various digital signal processing applications, such as linear 
filtering, correlation analysis, and spectrum analysis, its efficient computation is a topic 
that has received considerable attention by many mathematicians, engineers, and applied 
scientists.  

From this point, we change the notation that X(k), instead of y(k) in previous sections, 
represents the Fourier coefficients of x(n). 

Basically, the computational problem for the DFT is to compute the sequence {X(k)} of N 
complex-valued numbers given another sequence of data {x(n)} of length N, according to 
the formula 

 

In general, the data sequence x(n) is also assumed to be complex valued. Similarly, The 
IDFT becomes 

 

Since DFT and IDFT involve basically the same type of computations, our discussion of 
efficient computational algorithms for the DFT applies as well to the efficient 
computation of the IDFT. 

We observe that for each value of k , direct computation of X(k) involves N complex 
multiplications (4N real multiplications) and N-1 complex additions (4N-2 real additions). 

Consequently, to compute all N values of the DFT requires N
 2

 complex multiplications 
and N

 2
-N complex additions.  
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Direct computation of the DFT is basically inefficient primarily because it does not 
exploit the symmetry and periodicity properties of the phase factor WN. In particular, 
these two properties are :  

 

The computationally efficient algorithms described in this section, known collectively as 
fast Fourier transform (FFT) algorithms, exploit these two basic properties of the phase 
factor. 

  

Radix-2 FFT Algorithms 

Let us consider the computation of the N = 2
v
 point DFT by the divide-and conquer 

approach. We split the N-point data sequence into two N/2-point data sequences f1(n) and 
f2(n), corresponding to the even-numbered and odd-numbered samples of x(n), 
respectively, that is, 

 

Thus f1(n) and f2(n) are obtained by decimating x(n) by a factor of 2, and hence the 
resulting FFT  algorithm is called a decimation-in-time algorithm. 

Now the N-point DFT can be expressed in terms of the DFT's of the decimated sequences 
as follows: 
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But WN
2
 = WN/2. With this substitution, the equation can be expressed as 

 

where F1(k) and F2(k) are the N/2-point DFTs of the sequences f1(m) and f2(m), 
respectively.  

Since F1(k) and F2(k) are periodic, with period N/2, we have F1(k+N/2) = F1(k) and 
F2(k+N/2) = F2(k). In addition, the factor WN

k+N/2
 = -WN

k
. Hence the equation may be 

expressed as 

 

We observe that the direct computation of F1(k) requires (N/2)
2
 complex multiplications. 

The same applies to the computation of F2(k). Furthermore, there are N/2 additional 
complex multiplications required to compute WN

k
F2(k). Hence the computation of X(k) 

requires 2(N/2)
2
 + N/2 = N 

2
/2 + N/2 complex multiplications. This first step results in a 

reduction of the number of multiplications from N
 2 

to N 
2
/2 + N/2, which is about a factor 

of 2 for N large. 
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Figure TC.3.1 First step in the decimation-in-time algorithm. 

  

By computing N/4-point DFTs, we would obtain the N/2-point DFTs F1(k) and F2(k) 
from the relations 
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The decimation of the data sequence can be repeated again and again until the resulting 
sequences are reduced to one-point sequences. For N = 2

v
, this decimation can be 

performed v = log2N times. Thus the total number of complex multiplications is reduced 
to (N/2)log2N. The number of complex additions is Nlog2N. 

For illustrative purposes, Figure TC.3.2 depicts the computation of N = 8 point DFT. We 
observe that the computation is performed in tree stages, beginning with the 
computations of four two-point DFTs, then two four-point DFTs, and finally, one eight-
point DFT. The combination for the smaller DFTs to form the larger DFT is illustrated in 
Figure TC.3.3 for N = 8. 
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Figure TC.3.2 Three stages in the computation of an N = 8-point DFT. 

  

 

Figure TC.3.3 Eight-point decimation-in-time FFT algorithm.  
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Figure TC.3.4 Basic butterfly computation in the decimation-in-time FFT algorithm. 

  

An important observation is concerned with the order of the input data sequence after it is 

decimated (v-1) times. For example, if we consider the case where N = 8, we know that 
the first decimation yeilds the sequence x(0), x(2), x(4), x(6), x(1), x(3), x(5), x(7), and the 
second decimation results in the sequence x(0), x(4), x(2), x(6), x(1), x(5), x(3), x(7). This 
shuffling of the input data sequence has a well-defined order as can be ascertained from 
observing Figure TC.3.5, which illustrates the decimation of the eight-point sequence.  
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Figure TC.3.5 Shuffling of the data and bit reversal.  

  

Another important radix-2 FFT algorithm, called the decimation-in-frequency algorithm, 
is obtained by using the divide-and-conquer approach. To derive the algorithm, we begin 
by splitting the DFT formula into two summations, one of which involves the sum over 
the first N/2 data points and the second sum involves the last N/2 data points. Thus we 
obtain 

 

Now, let us split (decimate) X(k) into the even- and odd-numbered samples. Thus we 
obtain 

 

where we have used the fact that WN
2
 = WN/2 

The computational procedure above can be repeated through decimation of the N/2-point 
DFTs X(2k) and X(2k+1). The entire process involves v = log2N stages of decimation, 

where each stage involves N/2 butterflies of the type shown in Figure TC.3.7. 
Consequently, the computation of the N-point DFT via the decimation-in-frequency FFT 
requires (N/2)log2N complex multiplications and Nlog2N complex additions, just as in the 
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decimation-in-time algorithm. For illustrative purposes, the eight-point decimation-in-
frequency algorithm is given in Figure TC.3.8. 

  

 

Figure TC.3.6 First stage of the decimation-in-frequency FFT algorithm.  
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Figure TC.3.7 Basic butterfly computation in the decimation-in-frequency. 
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Figure TC.3.8 N = 8-piont decimation-in-frequency FFT algorithm.  

  

We observe from Figure TC.3.8 that the input data x(n) occurs in natural order, but the 
output DFT occurs in bit-reversed order. We also note that the computations are 

performed in place. However, it is possible to reconfigure the decimation-in-frequency 
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algorithm so that the input sequence occurs in bit-reversed order while the output DFT 
occurs in normal order. Furthermore, if we abandon the requirement that the 

computations be done in place, it is also possible to have both the input data and the 
output DFT in normal order. 

  

  Real Multiplications Real Additions 

N Radix-2 Radix-4 Radix-8 Split Radix Radix-2 Radix-4 Radix-8 Split Radix 

16 24 20   20 152 148   148 

32 88     68 408     388 

64 264 208 204 196 1032 976 972 964 

128 72     516 2054     2308 

256 1800 1392   1284 5896 5488   5380 

512 4360   3204 3076 13566   12420 12292 

1024 10248 7856   7172 30728 28336   27652 

Table TC.3.1 Number of Nontrivial Real Multiplcations and Additions to Compute an N-
point Complex DFT 
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UNIT_4 

 

 Goertzel’s Algorithm 
 

1.1 Introduction:  

       Standard frequency analysis requires transforming time-domain signal to 

frequency  domain and studying  Spectrum of the signal. This is done through DFT 

computation. N-point DFT computation results in N frequency components. We 

know that DFT computation through FFT requires N/2 log2N complex 

multiplications and N log2N additions. In certain applications not all N frequency 

components need to be computed (an application will be discussed). If the desired 

number of values of the DFT is less than 2 log2N than direct computation of the 

desired values is more efficient that FFT based computation. 

 

1.2 Example: DTMF – Dual Tone Multifrequency 

      This is known as touch-tone/speed/electronic dialing, pressing of each button 

generates a unique set of two-tone signals, called DTMF signals. These signals are 

processed at exchange to identify the number pressed by determining the two 

associated tone frequencies. Seven frequencies are used to code the 10 decimal digits 

and two special characters (4x3 array) 
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In this application frequency analysis requires determination of possible seven (eight) 

DTMF fundamental tones and their respective second harmonics .For an 8 kHz 

sampling freq, the best value of the DFT length N to detect the eight fundamental 

DTMF tones has been found to be 205 .Not all 205 freq components are needed here, 

instead only those corresponding to key frequencies are required.FFT algorithm is not 

effective and efficient in this application. The direct computation of the DFT which is 

more effective in this application is  formulated as a linear filtering operation on the 
input data sequence.  

This algorithm is known as Goertzel Algorithm 

This algorithm exploits periodicity property of the phase factor. Consider the DFT 

definition  

  

 

 

 

 Since         is equal to 1, multiplying both sides of the equation by this results in; 

 

 

 

This is in the form of a convolution  
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Where yk(n) is the out put of a filter which has impulse response of hk(n) and input  

x(n).  

 The output of the filter at n = N yields the value of the  DFT at the freq ωk = 2πk/N 

 The filter has frequency response given by 

 
 

 

The above form of filter response shows it has a pole on the unit circle at the frequency 
ωk = 2πk/N. 

Entire DFT can be computed by passing the block of input data into a parallel bank of 

N single-pole filters (resonators) 

 

1.3 Difference Equation implementation of filter: 

       From the frequency response of the filter (eq 6) we can write the following 

difference equation relating input and output; 
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The desired output is X(k) = yk(n) for k = 0,1,…N-1.  The phase factor appearing in the 
difference equation can be computed once and stored. 

The form shown in eq (7) requires complex multiplications which can be avoided doing 

suitable modifications(divide and multiply by 11  zW k

N
). Then frequency response of 

the filter can be alternatively expressed as  

  

 

 

This is second –order realization of the filter (observe the denominator now is a second-
order expression). The direct form realization of the above is given by 
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The recursive relation in (9) is iterated for  n = 0,1,……N, but the equation in (10) is 

computed only once at time n =N. Each iteration requires one real multiplication and 

two additions. Thus, for a real input sequence x(n) this algorithm requires (N+1) real 

multiplications to yield X(k) and X(N-k) (this is due to symmetry). Going through the 

Goertzel algorithm it is clear that this algorithm is useful only when M out of N DFT 

values need to be computed where M≤ 2log2N, Otherwise, the FFT algorithm is more 

efficient method. The utility of the algorithm completely depends on the application 

and number of frequency components we are looking for. 
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2. Chirp z- Transform 
 

2.1 Introduction: 

      Computation of DFT is equivalent to samples of the z-transform of a finite-length 

sequence at equally spaced points around the unit circle. The spacing between the 

samples is given by 2π/N. The efficient computation of DFT through FFT requires N 

to be a highly composite number which is a constraint. Many a times we may need 

samples of z-transform on contours other than unit circle or  we my require dense set 

of frequency samples over a small region of unit circle.  To understand these let us 

look in to the following situations: 

 

1. Obtain samples of z-transform on a circle of radius ‘a’ which is concentric to 

unit circle 

The possible solution is to multiply the input  sequence by a
-n

 

2. 128 samples needed between frequencies  

             ω = -π/8  to  +π/8 from a 128 point sequence 

From the given specifications we see that the spacing between the frequency 
samples is π/512 or 2π/1024. In order to achieve this freq resolution we take 
1024- point FFT  of the given 128-point seq by appending the  sequence with 896 

zeros. Since we need only 128 frequencies out of 1024  there  will be big wastage 
of computations in this scheme. 

 

For the above two problems Chirp z-transform is the alternative. 

 

Chirp z- transform is defined as: 
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Where zk is a generalized contour.  

 

Zk is the set of points in the z-plane falling on an arc which begins at some point z0 and 

spirals either in toward the origin or out away from the origin such that the points 
{zk}are defined as, 

 

 

       Note that, 

a. if R0< 1 the points fall on a contour that spirals toward the origin 

  

b. If R0 > 1 the contour spirals away from the origin 

c. If R0= 1 the contour is a circular arc of radius 

d.If r0=1 and R0=1 the contour is an arc of the unit circle. 

    (Additionally this contour allows one to compute the freq content of the sequence 

x(n) at dense set of L frequencies in the range covered by the arc without having to 

compute a large DFT (i.e., a DFT of the sequence x(n) padded with many zeros to 
obtain the desired resolution in freq.)) 

e. If r0= R0=1 and θ0=0 Φ0=2π/N and L = N the contour is the entire unit circle similar 

to the standard DFT. These conditions are shown in the following diagram. 
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      Substituting the value of zk in the expression of X(zk)  

 

 

      

 

     where   
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 2.2 Expressing computation of X(zk) as linear filtering operation: 

      

     By substitution of  

 

 

     we can express X(zk) as 

      

         

 

Where 

 

 

 

 

 

both g(n) and h(n) are complex valued sequences               

 

2.3 Why it is called Chirp z-transform? 
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       if R0 =1, then seq h(n) has the form of complex exponential  with argument  

ωn = n
2
Φ0/2 = (n Φ0/2) n. The quantity  (n Φ0/2) represents the freq of the complez 

exponential signal, which increases linearly with time. Such signals are used in radar 
systems are called chirp signals. Hence the name chirp z-transform. 
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2.4 How to Evaluate  linear convolution of  eq (17)  

1. Can be done efficiently with FFT 

2. The two sequences involved are g(n) and h(n). g(n) is finite length seq of length 

N and h(n) is of infinite duration, but fortunately only a portion of h(n) is 

required to compute L values of X(z), hence FFT could be still be used. 

3. Since convolution is via FFT, it is circular convolution of the N-point seq g(n) 

with an M- point section of h(n) where M > N 

4.  The concepts used in over lap –save method can be used                 
5. While circular convolution is used to compute linear convolution of two 

sequences we know the initial N-1 points contain aliasing and the remaining 

points are identical to the result that would be obtained from a linear 

convolution of h(n) and g(n), In view of this the DFT size selected is   M = 

L+N-1 which would yield L valid points and N-1 points corrupted by aliasing. 

The section of h(n) considered is for –(N-1) ≤ n≤ (L-1) yielding total length M 

as defined       
6.  The portion of h(n) can be defined in many ways, one such way is, 

        h1(n) = h(n-N+1)     n = 0,1,…..M-1 

7. Compute H1(k) and G(k) to obtain  

             Y1(k) = G(K)H1(k)  

8. Application of IDFT will give y1(n), for       

            n =0,1,…M-1. The starting N-1 are discarded and desired values are y1(n) for 

           N-1 ≤n ≤ M-1 which corresponds to the range 0 ≤n ≤ L-1 i.e., 

     y(n)= y1(n+N-1)  n=0,1,2,…..L-1   

9.  Alternatively h2(n) can be defined as 

 
 
 

10. Compute Y2(k) = G(K)H2(k), The desired values of y2(n) are in the range  
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            0 ≤n ≤L-1 i.e., 

            y(n) = y2(n)    n=0,1,….L-1 

11. Finally, the complex values X(zk) are computed by dividing y(k) by h(k)  

             For k =0,1,……L-1 

       

2.5 Computational complexity 

        In general  the computational complexity of CZT is of the order of M log2M  

complex multiplications. This should be compared with N.L which is required for 

direct evaluation. If L is small direct evaluation is more efficient otherwise if L is 
large then CZT is more efficient. 

   

2.5.1 Advantages of CZT 

      a. Not necessary to have N =L 

b.Neither N or L need to be highly composite 

c.The samples of Z transform are taken on a more general contour that includes 

the unit circle as a special case. 

      

  

 

2.6 Example to understand utility of CZT algortithm in freq analysis 

      (ref: DSP by Oppenheim Schaffer) 

CZT is used in this application to sharpen the resonances by evaluating the z-

transform off the unit circle. Signal to be analyzed is a synthetic speech signal 

generated by exciting a five-pole system with a periodic impulse train. The system was 

simulated to correspond to a sampling frq of 10khz.  The poles are located at center 
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freqs of 270,2290,3010,3500 & 4500 Hz with bandwidth of 30, 50,60,87 & 140 Hz 
respectively. 

 

 
Solution: Observe the pole-zero plots and corresponding magnitude frequency response 
for different choices of |w|. The following observations are in order: 
 

• The first two spectra correspond to spiral contours outside the unit circle with a 

resulting broadening of the resonance peaks 

• |w| = 1 corresponds to evaluating z-transform on the unit circle 

• The last two choices corresponds to spiral contours which spirals inside the unit 

circle and close to the pole locations resulting in a sharpening of resonance peaks. 
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2.7 Implementation of CZT in hardware to compute the DFT signals 

           

                   The block schematic of the CZT hardware is shown in down figure.  DFT 
computation requires r0 =R0 =1, θ0 = 0 Φ0 = 2π/N and L = N. 

The cosine and sine sequences in h(n) needed for pre multiplication and post 

multiplication are usually stored in a ROM. If only magnitude  of DFT is desired, the 
post multiplications are unnecessary, 

In this case |X(zk)| = |y(k)| k =0,1,….N-1   
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UNIT5 

 Frequency Transformation 
 

4.1 Introduction: 

       Frequency Transformation allows one to design a prototype filter and transform to 
any specific frequency selective type instead of designing each of the type separately. 
With frequency transformations designers can concentrate on improved methods of 
designing prototype rather than wasting time on devising design methodologies for 

different types of filters. One  top of all these one design and all types of frequency 
selective filters  is always an advantage. The techniques of Frequency transformation 
could be applied in both Analog and Digital domain.  
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4.2 Frequency Transformation in Analog domain: 

 

 In this transformation technique  normalized Low Pass filter with cutoff freq of Ωp = 1 

rad/sec is designed and all other types of filters are obtained from this prototype. For 

example, normalized LPF is transformed to LPF of specific cutoff freq by the following 

transformation formula, 

 

 Normalized LPF to LPF of specific cutoff: 

 

 

 

 

   

 

Where, 

Ωp= normalized cutoff freq=1 rad/sec 

Ω’p= Desired LP cutoff freq 

 

at Ω =Ω’p  it is H(j1) 

 
The other transformations are shown in the below table. 
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4.3 Frequency Transformation in Digital Domain:  

This transformation involves replacing the variable Z
-1

 by a rational function g(z
-1

), 

while doing this following properties need to be satisfied:  

1.    Mapping Z
-1

 to  g(z
-1

) must map points inside the unit circle in the Z- plane 

onto the unit circle of z- plane to preserve causality of the filter. 

 

2. For stable filter, the inside of the unit circle of the Z - plane must map onto the 

inside of the unit circle of the z-plane. 
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  The general form of the function g(.) that satisfy the above requirements of " all-pass 

" type is  

  

 

    

 
The different transformations are shown in the below table. 
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     Represents the transfer function of a lowpass filter (not butterworth) with a 

passband of 1 rad/sec. Use freq transformation to find the transfer function of the 
following filters: 

1. A LP filter with a passband of 10 rad/sec 

2. A HP filter with a cutoff freq of 1 rad/sec 

3. A HP filter with a cutoff freq of 10 rad/sec 

4. A BP filter with a passband of 10 rad/sec and a corner freq of 100 rad/sec 

5. A BS filter with a stopband of 2 rad/sec and a center freq of 10 rad/sec 

 

Solution: 

Given  

 

 

 

a. LP – LP Transform 
      replace  
 

 
 
 
 

 
 
 
 

b. LP – HP(normalized) Transform 
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c. LP – HP(specified cutoff) Transform 

      replace  
 
 
 

d. LP – BP Transform 
      replace  
 
 

 
 
 
 

 
 
 

e. LP – BS Transform 

      replace  
 
 
 

 
 
 

 

 

 

 

 

 

 

Prob: 
   Convert single pole LP Bufferworth filter with system function  
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   into BPF with upper & lower cutoff frequency   
          respectively ,  

  The LPF has 3-dB bandwidth   
 
Soln:        We have the transformation formula given by, 

 
applying this to the given transfer function, 

 
 
Note that the resulting filter has zeros at z=±1 and a pair of poles that depend on the 
choice of ωl and ωu 

 
 

 
This filter has poles at z=±j0.713 and hence resonates at ω=π/2 
 
The following observations are made, 
•  It is shown here that how easy to convert one form of filter design to another form.  

•  What we require is only prototype low pass filter design steps to transform to any other 
form.  
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Module -5 

Design of FIR  Filters 
 
 
3.1 Introduction: 

Two important classes of digital filters based on impulse response type are 

                Finite Impulse Response (FIR) 

                Infinite Impulse Response (IIR) 

 

The filter can be expressed in two important forms as: 

 

1 ) System function representation; 

 

 

 

 

 

2) Difference Equation representation; 
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       Each of this form allows various    methods of implementation. The eq (2) can be 

viewed as a computational procedure (an algorithm) for determining the output 

sequence y(n) of the system from the input sequence x(n). Different realizations are 
possible with different arrangements of eq (2) 

 

 

The major issues considered while designing a digital filters are : 

• Realizability (causal or non causal) 

• Stability (filter output will not saturate) 

• Sharp Cutoff Characteristics  

• Order of the filter need to be minimum (this leads to less delay) 

• Generalized procedure (having single procedure for all kinds of filters) 

• Linear phase characteristics 
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The factors considered with filter implementation are , 

a. It must be a simple design  

b. There must be modularity in the implementation so that any order filter can be 
obtained with lower order modules. 

c. Designs must be as general as possible. Having different design procedures for 

different types of filters( high pass, low pass,…)  is cumbersome and complex. 

d. Cost of implementation must be as low as possible   

e  The choice of  Software/Hardware realization 

 

  

3.2 Features of IIR: The important features of  this class of filters can be listed as: 

• Out put is a function of past o/p, present and past i/p’s 

• It is recursive in nature 

• It has  at least one Pole (in general poles  and zeros) 

• Sharp cutoff chas. is achievable with minimum  order 

• Difficult to have linear phase chas over full range of freq. 

•   Typical design procedure is analog design then  conversion from analog to digital  

    

 

3.3 Features of  FIR : The main features of FIR filter are, 

• They are inherently Stable 

• Filters with linear phase characteristics can be designed 

• Simple implementation – both recursive and nonrecursive  structures possible 

• Free of limit cycle oscillations when implemented on a finite-word length digital 

system 
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3.3.1 Disadvantages: 

• Sharp cutoff at the cost of higher order 

• Higher order leading to more delay, more memory and higher cost of 

implementation 

 

3.4 Importance of Linear Phase: 

The group delay is defined as  

 

 

which is negative differential of phase function. 

        Nonlinear phase results in different frequencies experiencing different delay and 

arriving at different time at the receiver. This creates problems with speech processing 

and data communication applications. Having linear phase ensures constant group 
delay for all frequencies. 

 

The further discussions are focused on FIR filter. 
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3.5 Examples of  simple FIR filtering operations: 

1.Unity Gain Filter 

     y(n)=x(n) 

2. Constant gain filter 

     y(n)=Kx(n) 

3. Unit delay filter 

     y(n)=x(n-1) 

4.Two - term  Difference filter 

     y(n) = x(n)-x(n-1) 

5. Two-term average filter 

     y(n) = 0.5(x(n)+x(n-1)) 

6. Three-term average filter (3-point moving average filter) 

     y(n) = 1/3[x(n)+x(n-1)+x(n-2)] 

7. Central Difference filter 

     y(n)= 1/2[ x(n) – x(n-2)] 

 

     When we say Order of the filter it is the number of previous inputs used to compute 

the current output and  Filter coefficients are the numbers associated with each of the 
terms x(n), x(n-1),.. etc 

The table below shows order and filter coefficients of above simple filter types: 
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Ex. order a0 a1 a2 

1 0 1 - - 

2 0 K - - 

3 1 0 1 - 

4(HP) 1 1 -1 - 

5(LP) 1 1/2 1/2 - 

6(LP) 2 1/3 1/3 1/3 

7(HP) 2 1/2 0 -1/2 

 

 

3.6 Design of FIR filters: 

        The section to follow will discuss on design of FIR filter. Since linear phase can be 
achieved with FIR filter we will discuss the conditions required to achieve this.   

 

3.6.1 Symmetric and Antisymmetric FIR filters giving out Linear Phase characteristics: 

 Symmetry in filter impulse response will ensure Linear phase 

 
An FIR filter of length M with i/p x(n) & o/p y(n) is described by the difference equation: 

 

y(n)= b0 x(n)  + b1 x(n-1)+…….+b M-1 x(n-(M-1)) = )(
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            -(1) 

 

Alternatively. it can be expressed in convolution form  



 
 

BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT 
Avalahalli, Doddaballapur Main Road, Bengaluru - 560064 

 

Digital Signal Processing-18EC52 
 

 
 

 
 

53 

 







1

0

)()()(
M

k

knxkhny                          - (2) 

 
i.e bk= h(k), k=0,1,…..M-1 
 

Filter is also  characterized by  
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kzkhzH      -(3) polynomial of degree M-1 in the variable z
-1

. The roots of this 

polynomial constitute zeros of the filter.  
 
An FIR filter has linear phase if its unit sample response  satisfies the condition 
 h(n)= ± h(M-1-n)   n=0,1,…….M-1         -(4) 

 
 Incorporating this symmetry & anti symmetry condition in  eq 3 we can show linear 
phase chas of FIR filters  
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3.6.2Frequency response: 

       If the system impulse response has symmetry property (i.e.,h(n)=h(M-1-n)) and M is 
odd 
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In case of M even the phase response remains the same with magnitude response 
expressed as 
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If the impulse response satisfies anti symmetry property (i.e., h(n)=-h(M-1-n))then for  
M odd we will have  
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If M is even then, 
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In both cases the phase response is given by 
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Which clearly shows presence of Linear Phase characteristics. 

 

 

3.6.3 Comments on filter coefficients: 

• The number of filter coefficients that specify the frequency response is (M+1)/2 

when is M odd and M/2 when M is even in case of symmetric conditions 

• In case of impulse response antisymmetric we have h(M-1/2)=0 so that there are     

(M-1/2) filter coefficients when M is odd and M/2 coefficients when M is even 

 

3.6.5 Choice of Symmetric and antisymmetric unit sample response 

         When we have a choice between different symmetric properties, the particular one 
is picked up based on application for which the filter is used. The following points give 

an insight to this issue.  
• If h(n)=-h(M-1-n) and M is odd, Hr(w) implies that Hr(0)=0 & Hr(π)=0, 

consequently not suited for lowpass and highpass filter. This condition is suited in 

Band Pass filter design. 

• Similarly if M is even Hr(0)=0 hence not used for low pass filter 

• Symmetry condition h(n)=h(M-1-n) yields a linear-phase FIR filter with non zero 

response at w = 0 if desired. 

Looking at these points, antisymmetric properties are not generally preferred. 
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3.6.6 Zeros of Linear Phase FIR Filters: 

Consider the filter system function 

 

 

 

Expanding this equation 
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This shows that if z = z1 is a zero then z=z1
-1

 is also a zero 

The different possibilities: 

1. If z1 = 1 then z1 = z1
-1

 =1 is also a zero implying it is one zero 

2. If the zero  is real and |z|<1 then we have pair of zeros 

3. If zero  is complex and |z|=1then and we again have pair of complex zeros. 

4. If zero  is complex and |z|≠1 then and we  have two pairs of complex zeros 
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        The plot above shows distribution of zeros  for a Linear – phase FIR filter. As it 
can be seen there is pattern in distribution of these zeros. 



 
 

BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT 
Avalahalli, Doddaballapur Main Road, Bengaluru - 560064 

 

Digital Signal Processing-18EC52 
 

 
 

 
 

60 

 

 

3.7 Methods of designing FIR filters: 

The standard methods of designing FIR filter can be listed as: 
 
1. Fourier series based method 

2. Window based method 

3. Frequency sampling method 

 

 

         3.7.1 Design of Linear Phase FIR filter based on Fourier Series method : 

      

        Motivation: Since the desired freq response Hd(e
jω

) is a periodic function in ω with  

period 2π, it can be expressed as Fourier series expansion 
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This expansion results in impulse response coefficients which are infinite in duration 

and non causal. It can be made finite duration by truncating the infinite length. The 

linear phase can be obtained by introducing symmetric property in the filter impulse 

response, i.e., h(n) = h(-n). It can be made causal by introducing sufficient delay 
(depends on filter length) 

     

 3.7.2 Stepwise procedure: 

1. From the desired freq response using inverse FT relation obtain hd(n)  

2. Truncate the infinite length of the impulse response to finite length with     ( 

assuming M odd) 

 

 

 

3. Introduce h(n) = h(-n) for linear phase characteristics 

4. Write the expression for H(z); this is non-causal realization 

5. To obtain causal realization H’(z) = z 
-(M-1)/2

 H(z) 

otherwise
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      Prob 1 : Design an ideal bandpass filter with a frequency response: 

 

 

      

       

 

Find the values of h(n) for M = 11 and plot the frequency response. 
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For n = 0 the value of h(n) is separately evaluated from the basic integration  

    h(0) = 0.5 

Other values of h(n) are evaluated from h(n) expression 

   h(1)=h(-1)=0 

   h(2)=h(-2)=-0.3183 

   h(3)=h(-3)=0 

   h(4)=h(-4)=0 

   h(5)=h(-5)=0 

 

The transfer function of the filter is 
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The magnitude response can be expressed as  

 

 

 

 

 
 

 

 

We have 

a(0)=h(0) 

a(1)=2h(1)=0 

a(2)=2h(2)=-0.6366 

a(3)=2h(3)=0 

a(4)=2h(4)=0 

a(5)=2h(5)=0 

 

The magnitude response function is  

    |H(e 
jω

)| = 0.5 – 0.6366 cos 2ω which can plotted for various values of ω 

ω in degrees =[0 20 30 45 60 75 90 105 120 135 150 160 180]; 

|H(e 
jω

)| in dBs= [-17.3 -38.17 -14.8 -6.02 -1.74 0.4346 1.11 0.4346 -1.74 -6.02 -14.8 -

38.17 -17.3]; 
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      Prob 2: Design an ideal lowpass filter with a  freq response 

 

 

 

    

          

     Find the values of h(n) for N =11. Find H(z). Plot the magnitude response  
 
 

 
 From  the freq response we can determine hd(n), 
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Truncating hd(n) to 11 samples 

 
h(0) = 1/2 
h(1)=h(-1)=0.3183 
h(2)=h(-2)=0 

h(3)=h(-3)=-0.106 
h(4)=h(-4)=0 
h(5)=h(-5)=0.06366 
 

The realizable filter can be obtained by shifting h(n) by 5 samples to right h’(n)=h(n-5) 
 
h’(n)= [0.06366, 0, -0.106, 0, 0.3183, 0.5, 0.3183, 0, -0.106, 0, 0.06366]; 
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Using the result of magnitude response for  M odd and symmetry 
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Exercise Problem: 

   Design an ideal band reject  filter with a frequency response: 

 

 

      

      

 

 Find the values of h(n) for M = 11 and plot the frequency response 

 

 

Ans:h(n)= [0   -0.1378  0  0.2757  0  0.667  0  0.2757  0      -0.1378  0]; 

 

 

3.8 Window based Linear Phase FIR filter design 

      The other important method of designing FIR filter is by making use of windows.  
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The arbitrary truncation of impulse response obtained through inverse Fourier 

relation can lead to distortions in the final frequency response.The arbitrary truncation 

is equivalent to multiplying infinite length function with finite length rectangular 
window, i.e., 

   h(n) = hd(n) w(n) where w(n) = 1 for n = ±(M-1)/2  

The above multiplication in time domain corresponds to convolution in freq domain, 

i.e., 

    H( e 
jω 

) = Hd(e 
jω

) * W(e 
jω 

)  where W(e 
jω 

) is the FT of window function w(n).  

 

The FT of w(n) is given by 

  

 
 
 
 

The whole process of multiplying h(n) by a window function and its effect in freq domain 
are shown in below set of figures. 
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       Suppose the filter to be designed is Low pass filter then the convolution of ideal 

filter freq response and window function freq response results in distortion in the 

resultant filter freq response. The ideal sharp cutoff chars are lost and presence of 

ringing effect is seen at the band edges which  is referred to Gibbs Phenomena. This is  

due to main lobe width and side lobes of the window function freq response.The main 

lobe width introduces transition band and side lobes results in rippling characters in 
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pass band and stop band. Smaller the main lobe width smaller will be the transition 

band. The ripples will be of low amplitude if the peak of the first side lobe is far below 

the main lobe peak. 

 

3.8.1 How to reduce the distortions? 

1. Increase length of the window 

    - as M increases the main lob width becomes narrower, hence the transition band 
width is decreased 

   -With increase in length the side lobe width is decreased but height of each side lobe 

increases in such a manner that the area under each sidelobe remains invariant to 

changes in M. Thus ripples and ringing effect in pass-band and stop-band are not 
changed. 

2. Choose windows which tapers off slowly rather than ending abruptly  

     - Slow tapering reduces ringing and ripples but generally increases transition width 
since main lobe width of these kind of windows are larger. 

 

 

3.8.2 What is ideal window characteristics? 

            Window having very small main lobe width with most of the energy contained 

with it (i.e.,ideal window freq response must be impulsive).Window design is a 

mathematical problem, more complex the window lesser  are the distortions. 
Rectangular window is one of the simplest window in terms of computational 

complexity. Windows better than rectangular window are, Hamming, Hanning, 

Blackman, Bartlett, Traingular,Kaiser. The different window functions are discussed 
in the following sention.  

 

3.8.3 Rectangular window: The mathematical description is given by, 
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3.8.4 Hanning windows: 
 It is defined mathematically by,  

 

 
 
 

 
 

3.8.5 Hamming windows: 

This window function is given by, 
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3.8.6 Blackman windows: 

This window function is given by,  

 

 
 

3.8.7 Bartlett (Triangular) windows: 

The mathematical description is given by, 
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3.8.8 Kaiser windows: The mathematical description is given by, 
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Type of window Appr. Transition  

width of the main lobe 

Peak  

sidelobe (dB) 

Rectangular 4π/M -13 

Bartlett 8π/M -27 

Hanning 8π/M -32 

Hamming 8π/M -43 

Blackman 12π/M -58 

 

        Looking at the above table we observe filters which are mathematically simple do 

not offer best characteristics. Among the window functions discussed Kaiser is the most 

complex one in terms of functional description whereas it is the one which offers 

maximum flexibility in the design. 
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3.8.9 Procedure for designing linear-phase FIR filters using windows: 

 
1.  Obtain hd(n) from the desired freq response using inverse FT relation  

2. Truncate the infinite length of the impulse response to finite length with   
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         ( assuming M odd) choosing proper window 

 

 

 

 

3.       Introduce h(n) = h(-n) for linear phase characteristics 

4.       Write the expression for H(z); this is non-causal realization 

5.       To obtain causal realization H’(z) = z 
-(M-1)/2

 H(z)  

 

 

   

 

 

 Prob 1: Design an ideal  highpass  filter with a frequency response: 

 

 

      

      

 

 using a hanning window with  M = 11 and plot the frequency response. 
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      hd(1) = hd(-1)=-0.225 

      hd(2) = hd(-2)= -0.159 
      hd(3) = hd(-3)= -0.075 
      hd(4) = hd(-4)= 0 
      hd(5) = hd(-5) = 0.045 

The hamming window function is given by  
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whn(0) = 1 
whn(1) = whn(-1)=0.9045 
whn(2)= whn(-2)=0.655 
whn(3)= whn(-3)= 0.345 

whn(4)= whn(-4)=0.0945 
whn(5)= whn(-5)=0 
 

h(n)= whn(n)hd(n) 

 

h(n)=[0  0 -0.026  -0.104  -0.204  0.75  -0.204  -0.104  -0.026  0  0] 
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Using the equation  
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The magnitude response is given by, 

|Hr(e 
jω

)| = |0.75 - 0.408cosω - 0.208 cos2ω - 0.052cos3ω| 

 

ω in degrees = [0 15 30 45 60 75 90 105 120 135 150 165 180] 

|H(e 
jω

)| in dBs = [-21.72  -17.14  -10.67 -6.05  -3.07 -1.297 -0.3726  

-0.0087 0.052  0.015  0  0  0.017] 
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Prob 2 : Design a filter with a frequency response: 

 

 

      

      

 

 

 using a Hanning window with  M = 7 

 

Soln: 

The freq resp is having a term e 
–jω(M-1)/2

 which gives h(n) symmetrical about 

 n = M-1/2 = 3 i.e we get a causal sequence. 

 

    

  

 

    

  

 

 

 

 

 

 

 

 

The Hanning window function values are given by 

whn(0) = whn(6) =0 
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whn(1)= whn(5) =0.25 

whn(2)= whn(4) =0.75 

whn(3)=1 

h(n)=hd(n) whn(n)  

h(n)=[0  0.03975  0.165  0.25  0.165  0.3975  0] 

 

 

 
 
 

 3.9  Design of Linear Phase FIR filters using Frequency Sampling method: 

    

3.9.1 Motivation: We know that DFT of a finite duration DT sequence is obtained by     

sampling FT of the sequence then DFT samples  can be used in reconstructing original 

time domain samples if frequency domain sampling was done correctly. The samples of 
FT of h(n) i.e., H(k) are sufficient to recover h(n). 

            Since the designed filter has to be realizable then h(n) has to be real, hence even 

symmetry properties for mag response |H(k)| and odd symmetry properties for phase 
response can be applied. Also, symmetry for h(n) is applied to  obtain linear phase chas. 

Fro DFT relationship we have 
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Also we know H(k) = H(z)| z=e 

j2πkn/N 

 

The system function H(z) is given by 

 







1

0

)()(
N

n

nznhzH  

 

Substituting for h(n) from IDFT relationship 
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Since H(k) is obtained by sampling H(e

jω
) hence the method is called Frequency 

Sampling Technique. 

 
Since the impulse response samples or coefficients of the filter has to be real for filter to 
be realizable with simple arithmetic operations, properties of  DFT of real sequence can 
be used. The following properties of DFT for real sequences are useful: 

 
H*(k) = H(N-k) 
 
|H(k)|=|H(N-k)| - magnitude response is even 

 
θ(k) = - θ(N-k) – Phase response is odd 
 







1

0

/2)(
1

)(
N

k

NknjekH
N

nh   can be rewritten as (for N odd) 
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Using substitution k = N – r or r = N- k in the second substitution 
with r going from now  (N- 1)/2  to 1 as k goes from 1 to (N-1)/2 
 























































 

 

 





































2/)1(

1

/2

2/)1(

1

*/2/2

2/)1(

1

2/)1(

1

*/2/2

2/)1(

1

2/)1(

1

/2*/2

2/)1(

1

2/)1(

1

/2/2

)(Re(2)0(
1

)(

))(()(()0(
1

)(

))(()()0(
1

)(

)()()0(
1

)(

)()()0(
1

)(

N

k

Nknj

N

k

NknjNknj

N

k

N

k

NknjNknj

N

k

N

k

NknjNknj

N

k

N

k

NknjNknj

ekHH
N

nh

ekHekHH
N

nh

ekHekHH
N

nh

ekHekHH
N

nh

ekNHekHH
N

nh











 

 
Similarly for N even we have 
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Using the symmetry property h(n)= h (N-1-n) we can obtain Linear phase FIR filters 

using the frequency sampling technique.  

 

   

 

  Prob 1 : Design a LP FIR filter using Freq sampling technique having cutoff freq of 

π/2 rad/sample. The filter should have linear phase and length of 17. 
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The desired response can be expressed as 
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The range for “k” can be adjusted to be an integer such as  
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The freq response is given by 
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Using these value of H(k)   we obtain h(n) from the equation 
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 Even though k varies from 0 to 16 since we considered ω varying between 0 and 
π/2 only k values from 0 to 8 are considered 

 While finding h(n) we observe symmetry in h(n) such that n varying 0 to 7 and 9 

to 16 have same set of h(n) 
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 3.10 Design of FIR Differentiator 

             Differentiators are widely used in Digital and Analog systems whenever a 

derivative of the signal is needed.  Ideal differentiator has pure linear magnitude 

response in the freq range –π to +π. The typical frequency response characteristics is 
as shown in the below figure. 

 

 

 
 
 

 
Prob: Design an Ideal Differentiator using a) rectangular window and b)Hamming 
window with length of the system = 7.  
 

Solution: 
As seen from differentiator frequency chars. It is defined as 
 
H(e

jω
) = jω     between –π to +π 
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The hd(n) is an add function with hd(n)=-hd(-n) and hd(0)=0 
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a) rectangular window 
 

h(n)=hd(n)w r(n) 
 
h(1)=-h(-1)=hd(1)=-1 
h(2)=-h(-2)=hd(2)=0.5 

h(3)=-h(-3)=hd(3)=-0.33 
 
h’(n)=h(n-3) for causal system 
thus, 
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For M=7 and h’(n) as found above we obtain this as  
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b) Hamming window 
h(n)=hd(n)wh(n) 
 

where wh(n) is given by 
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For the present problem 

33
3

cos46.054.0)(  n
n

nwh


 



 
 

BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT 
Avalahalli, Doddaballapur Main Road, Bengaluru - 560064 

 

Digital Signal Processing-18EC52 
 

 
 

 
 

89 

The window function coefficients are given by  for n=-3 to +3  
Wh(n)= [0.08 0.31 0.77 1 0.77 0.31 0.08]  

 
Thus h’(n) = h(n-5) = [0.0267, -0.155, 0.77, 0, -0.77, 0.155, -0.0267] 
 
Similar to the earlier case of rectangular window we can  write the freq response of 

differentiator as 
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r
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We observe  

 With rectangular window, the effect of ripple is more and transition band width is 
small compared with hamming window 

 With hamming window, effect of  ripple is less whereas transition band is more 

 
 

3.11 Design of FIR Hilbert transformer: 

Hilbert transformers are used to obtain phase shift of 90 degree. They are also called j 

operators. They are typically required in  quadrature signal processing. The Hilbert 
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transformer is very useful when out of phase component (or imaginary part) need to be 
generated from available real component of the signal. 

 

 
Prob: Design an ideal Hilbert transformer using a) rectangular window and b) Blackman 
Window with M = 11 

 

 

   

 

 

Solution: 

 As seen from freq chars it is defined as 
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The impulse response is given by 
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At n = 0  it is hd(0) = 0 and hd(n) is an odd function 
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a)  Rectangular window 
 h(n) = hd(n) wr(n) = hd(n) for -5 ≥n ≥5 

 
h’(n)=h(n-5) 
 
h(n)= [-0.127, 0, -0.212, 0, -0.636, 0, 0.636, 0, 0.212, 0, 0.127]  
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b) Blackman Window 

 window function is defined as  

otherwise
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Wb(n) = [0, 0.04, 0.2, 0.509,0.849,1,0.849, 0.509, 0.2, 0.04,0]  for -5≥n≥5 
 
h’(n) = h(n-5) = [0, 0, -0.0424, 0, -0.5405, 0, 0.5405, 0, 0.0424, 0, 0]  
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